U.L.P. UFR de Sciences physiques

Session d'examen de septembre 2006 Electromagnétisme 1

Durée 2 heures Tout document est interdit

Exercice A

- 1. On considère deux charges ponctuelles, q et -q, placées dans le vide (permittivité ε_o) et distantes de a.
- 1. a. Exprimer en fonction des données, l'énergie potentielle électrostatique W de ce système de charges.
 - 1. b. Donner une explication physique du signe de W.
- 1. c. La généralisation à un système de n charges ponctuelles est $W=\frac{1}{2}\sum q_iV_i$ où $i=1,\dots n.$ Que représente le terme V_i ?
- 2. On considère une distribution volumique continue de charges, de densité volumique ρ constante, dans un volume sphérique Ω de centre O et de rayon R.
- 2. a. Déterminer, en fonction des données et en tout point M de l'espace, le champ électrostatique E dû à cette distribution de charges; on notera r la distance OM. Représenter graphiquement la norme E du champ E en fonction de r.
 - 2. b. Déterminer le potentiel électrostatique V pour $r \le R$.
- 2. c. Calculer en fonction des données, l'énergie potentielle électrostatique W_1 de cette distribution en appliquant l'expression générale $W_1 = \frac{1}{2} \iiint_{tout \; espace} \epsilon_o \; E^2 \; d\tau, \; d\tau$ étant égal à 4 π r² dr dans le cas présent.

En quelles unités s'exprime $\varepsilon_0 E^2$? Dans quelle région de l'espace est localisée W_1 ? Cette énergie W_1 est positive; or l'énergie W_1 obtenue à la question 1. a. est négative. D'où provient cette contradiction (apparente)?

- 2. d. Calculer en fonction des données, l'énergie potentielle électrostatique W_2 de cette distribution en appliquant l'expression générale $W_2 = \frac{1}{2} \iiint_{\Omega} \rho V \, d\tau$. Dans quelle région de l'espace cette énergie est-elle localisée? En quoi le potentiel V diffère-t-il du potentiel V_i de la question 1.c?
- 2. e. Laquelle des deux expressions, W_1 ou W_2 , est la plus correcte? Justifier votre réponse.

Exercice B

Un solénoïde infini, comptant N spires circulaires par unité de longueur, est parcouru par un courant d'intensité I.

- 1. Calculer l'énergie magnétique W contenue dans une tranche d'épaisseur h suivant l'axe de la bobine; on notera a le rayon des spires.
- 2. Application numérique: h=10cm, a=5cm et B (norme du champ magnétique uniforme régnant dans la bobine)=5T.

Pour concentrer dans le même volume, la même énergie sous forme électrostatique, quelle devrait être la valeur de la norme E du champ électrostatique uniforme dans le solénoïde?

Exercice C

Une spire circulaire homogène conductrice de masse M, de résistance R, de self négligeable, de rayon a, est suspendue à un fil isolant vertical OO_1 qui n'oppose aucune résistance à la torsion. Un champ magnétique \boldsymbol{B} , horizontal, uniforme, règne dans toute la région où peut se mouvoir la spire. On désigne par α l'angle que fait la normale à la spire avec \boldsymbol{B} . A l'instant t=0, la spire est lancée à partir de la position α =0, à la vitesse angulaire ω_0 autour de OO_1 . On notera i le courant induit dans la spire.

- 1. Montrer que $i = \pi a^2$ (B/R) $\omega \sin \alpha$, B étant la norme de **B**.
- 2. En mécanique, on établit que l'équation différentielle du mouvement est $\frac{1}{2}$ Ma² $\omega = -\pi$ a² i B sin α . Montrer que ω et α sont liés par :

$$\omega = \omega_0 - (\pi^2 a^2 B^2 / 2 M R) (2\alpha - \sin 2\alpha).$$

(Indication: $\sin^2 \alpha = (1 - \cos 2\alpha)/2$)

En déduire la valeur qu'il faut donner à B pour que la spire s'arrête pour une valeur finale de $\alpha = \pi/2$ lorsque M=2g, ω_0 =2 π rd/s, R=4x10⁻² Ω et a=5cm.

3. Montrer que l'énergie totale dissipée par effet Joule dans la spire est égale à son énergie cinétique initiale $(Ma^2/4)\omega_0^2$.